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Abstract—Warehouses and industrial sites are getting more
and more interest in automating their workflow; in such an
environment, a robust localization method is required to ac-
complish safe navigation indoors. One widely used scheme is
the usage of custom AGVs and dedicated infrastructures to
automate moving goods within the warehouse; however, such
a solution needs to modify the infrastructure or to make custom
robots that fit the existing infrastructure, which requires an
important investment. In this paper, we present and validate
the SmartTrolley, a generic, modular, and scalable experimental
platform for usage in warehouses and industrial sites; able to
localize itself in the environment using a scan matching and EKF
based indoor Simultaneous Localization and Mapping (SLAM)
algorithm.

Index Terms—Mobile robot; Indoor Localization; LiDAR;
Sensor Fusion; SLAM; NDT; PSO; EKF; SmartTrolley;

I. INTRODUCTION

A mobile robot needs to interact with its environment;
it needs a set of actuators to act on its environment and
needs sensors to perceive the environment and make decisions
depending on the sensed information. In order to achieve a
given task, a mobile robot must locate itself in its environment;
given this knowledge, the robot can plan, navigate, and interact
with the real world.

Indoor localization has been subject to several research
works since there is no standardized technology for that
purpose; researchers use existing technologies (like Vision,
laser ranging, WiFi, and Bluetooth) to provide localization
methods that address specific use cases, and responds to
specific accuracy requirements.

In mobile localization, the robot estimates its state (i.e., the
position and orientation in the map reference frame) using
known and available information about the environment (i.e.
a map with an attached reference frame).

In some cases, having a predefined map of the environ-
ment can be challenging; in such a case, we often do both
localization and map building at the same time, this is known
as Simultaneous Localization And Mapping (SLAM). Laser
scanners are very famous sensor types for SLAM; several
methods have been proposed, based on scan matching [1]-[3],
or filtering [4]. Structure From Motion (SFM) based SLAM
is proposed in [5]; using a monocular camera, the algorithm
extracts features using the Shi-Tomasi operator, then uses a
Farticle Filter to estimate depth data from a stream of 2D
images, and an Extended Kalman Filter (EKF) to estimate
the camera motion. In [6] the authors used a fusion of vision

with publicly available digital map of the vehicle outdoors
environment. Other SLAM methods based on mono, stereo,
and depth cameras have been proposed in [7]-[9].

In other cases, when the environment can be modified,
we can see the localization systems from an infrastructure
viewpoint; thus, these systems can fit into three big categories,
infrastructure-based, infrastructure-less, and hybrid localiza-
tion systems. In infrastructure-based localization, the robot and
the environment collaborate to perform the positioning, for this
to works; the environment must be equipped with sensors,
tags, markers or landmarks to facilitate the state estimation.
Researchers used many technologies to achieve that, including
the usage of Visible-Light Communication (VLC) [10]-[12], or
exploiting wireless signal properties in radio-frequency based
technologies like using the WiFi’s Received Signal Strength
Indicator (RSSI) to estimate the robot position with respect
to known WiFi hotspots [13]-[16], or using Zigbee [17]-[19]
and Bluetooth [20], [21] in a similar way, or using Ultrawide
Band (UWB) and measure the Difference Time of Arrival
(DToA) of the signal, then use this information to estimate
distances to known UWB anchors [22]-[26]. Other researchers
used dead-reckoning techniques to estimate the robot pose
by integrating displacements in small time intervals; some
studies used Inertial Measurement Units (IMUs) [27]-[29],
others used Optical Flow Sensors widely known for being
used in computer mice [30]-[33]. However, if used alone,
dead-reckoning is known to be error cumulative; therefore,
researchers generally use this technique along with other type
of sensors like cameras, LiDARs, or radio-frequency sensors.

In [34], Choi proposed a hybrid RFID-Ultrasonic localiza-
tion system, in this work, the localization is estimated globally
using the RFID tags placed on the floor, this estimation gives
an absolute position, but with high uncertainties, the algorithm
uses ultrasonic sensors to build a local map which is used to
reduce the uncertainty and improve accuracy. Other hybrid
methods have been proposed in [35], [36].

In this paper, we present SmartTrolley; an experimental
platform for moving heavy loads in warehouses. This plat-
form, intended to validate multisensor fusion-based indoor
localization algorithms, is presented with a LiDAR-based scan
matching SLAM implementation with EKF sensor fusion.

We organized this manuscript as follow: Section II describes
the SmartTrolley mobile platform, the used sensors, actuators,
and equipment; Section III provides the kinematic model, the
odometry model, and the laser data modeling; Section IV
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Fig. 1. Bottom view of the main components of our mobile trolley.

describes the model we used to represent the environment,
the scan alignment, the pose estimation, and the EKF data
fusion; In Section V an experimental validation is presented,
and in Section VI we provide a conclusion with an overview
of our future perspectives.

II. EXPERIMENTAL PLATFORM

In this section, we present the SmartTrolley, a mobile
platform for moving heavy loads in warehouses or industrial
factories; this experimental platform is used to validate the
localization and navigation algorithms.

For the chassis, we used a standard high load trolley of
dimensions 1.2m x 0.8m. The propulsion is ensured by two
self-contained traction wheels named Gen2 from the ez-Wheel
company, we mounted two traction wheels in the center of
our trolley (as a differential-drive), and one castor at each
corner, a bottom view of the platform is illustrated in (Fig. 1).
We equipped the platform with two Sick S300 LiDARs and
wheels odometers. However, our embedded system includes
a large scale of communication technologies to easily add
other sensors and implements a sensor fusion framework to
fuse these sensors’ data for better decision-making in highly
dynamic environments.

A. Propulsion motors & wheels

For our platform, we used two wheels of the ez-Wheel’s
Gen2' model (Fig. 2); the Gen2 generates a torque capable of
moving around 1500kg of charges.

The ez-Wheel company develops plug-and-play electric
wheels, that can be used to make motorizing any mobile
platform an easy job. Each wheel is entirely self-contained; the
Gen2 model contains a wheel of diameter ©150mm, a motor
to wheel gearing (with a reduction factor of 1 : 14), a Brush-
less DC Motor, an incremental encoder of 420 ticks/rev, a
100W h Lithium-ion battery with an integrated BMS (Battery
Management System), an optional brake system, the power
electronic circuitry, an sMC (Safe Motor Control)* module
(which ensures the communications, speed regulation and

"The ez-Wheel Gen2 prototype we used still in development. The specs,
design, and size of the final product might slightly differs the one we used,
see: safetywheeldrive.com for up-to-date information.

2The sMC (Safe Motor Control) module is developed by the ez-Wheel
company, it is certified for usage in safety-critical systems.
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Fig. 2. Internal components of the ez-Wheel Gen2 self-contained motorized
wheel, top right: The assembled Gen2 wheel.

system safety), and an optional Variscite DART-MX6 Linux
powered System-on-Module (SoM) for high-level operations.

All parts are held in a compact housing with access to a
Human-Machine Interface (HMI) via standard communication
protocols like Ethernet, WiFi, CAN, RS232, and USB.

The Safe Motor Control (sMC) module contains an em-
bedded microcontroller that regulates the velocity, it takes
the desired speed as an input, and it outputs the incremental
ticks counter calculated internally from the integrated rotation
encoder.

The Gen2 is designed with safety in mind; it complies with
a set of safety-oriented standards, including the NF EN 61800-
5-2 (Adjustable Speed Electrical Power Drive Systems/Part 5-
2: Safety requirements), NF EN 61508 (Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related
Systems), and NF EN 13849 (Safety of Machinery) standards.

We connected the two Gen2 wheels to the embedded com-
puter via a CAN bus, the communication uses the CANopen
protocol.

B. Embedded Computer

We used the Neousys Nuvo-7002LP embedded computer
(Fig. 3b), with an 8th Generation Intel® Coffee lake Core™
i5 processor, and a 16GB DDR4 2666/2400 SDRAM. By
default, this embedded computer supports many 10 protocols,
including two software-programmable RS-232/422/485 ports
that we used them to connect the two S300 LiDARs via RS-
422. To connect our two Gen2 wheels, we added a CAN bus
interface to the initial configuration. We used Ubuntu 18.04
LTS as an operating system and ROS Melodic as middleware.

C. Sensors

1) Proprioceptive sensors: Internal, proprioceptive, or in-
teroception sensors gives us the internal state of the robot,
without depending on external observations. In robotics, wheel
encoders are the most famous proprioceptive sensors; they
measure the rotation angle of the wheel in ticks, the encoder
resolution is defined by the number of ticks it outputs per
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one wheel revolution (tick /rev). Typically wheel encoders are
divided into two types; incremental encoders used generally
for speed regulation and absolute encoders used for position
regulation.

The motorized wheels we used contains internal incremental
wheel encoders; those are used internally to regulate the wheel
rotation speed, we used this information to calculate the linear
displacements of each wheel, then we used them to calculate
the odometry of the robot.

2) Exteroceptive sensors: To perceive the environment, we
use two SICK S300 LiDARs (Fig. 3a); each one covers a
field of view (FOV) of 270°; we mounted these two LiDARs
diagonally to cover 360° (Fig. 1).

The S300 is very popular in industrial applications; it
uses the principle of time-of-flight to measure ranges; this
model is intended to be used in monitoring hazardous areas
indoors [37]. The S300 fulfills many safety-oriented directives
and standards, like EN ISO 12100 (Safety of machinery),
ISO 11161 (Industrial automation systems), EN ISO 10218-
1 (Safety requirements for robots), and ANSI/RIA R15.06
(Safety requirements for Industrial Robots and Robot Sys-
tems), a more exhaustive list can be found in [38].

To improve system safety, the S300 can be configured with
the SICK Configuration & Diagnostics Software (CDS) to
define critical space around the robot. In operating time, if
an object enters the critical space, the LiDAR sends a signal
on its safety outputs. These outputs can be linked to brakes
or to the embedded computer to handle the safety-critical
situation; we used this feature to enhance the safety in dynamic
environments at the lowest level.

The S300 Standard has a maximum measuring range of
30m, FOV of 270° with an angular resolution of 0.5°, and
offers safety-oriented configurable features, with a protective
field range of 3m [37].

III. SYSTEM MODELING
A. Kinematic Model

We model the robot as a differential-drive, the only param-
eters we can directly control in this case are the left and the
. . . T
right wheels velocities (v; and v, respectively). Let (:,E Y (;5)
denotes the robot state (the position and orientation in space),
L represents the distance between the two traction wheels, and
R represents the wheel radius, the robot kinematic model is
given by:

R
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To control our robot, we need a way to specify the linear
and angular velocities (v and w respectively) as inputs; to do
this, we can use the Unicycle model:

x v COS ¢
y| =|vsing 2)
) w

From (1) and (2) we can express the output parameters v,
and v, as a function of input control parameters v and w:

w 1 (2v—wL
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We need to calculate the position by summing traveled
distances at small amounts of time, the only information we
can get from the encoders is an incremental counter of ficks.
Let Atick = (tick,—tick,—1) the difference of ticks at a given
time iteration ¢, knowing the wheel radius R and the encoder
resolution res, the distance traveled by the robot center AD
can be calculated using the distances traveled by the left and
right wheels (AD; and A D, respectively):

B. Odometry

. AD; + AD,

AD
2

2rR

with ADy, = Z— Aticky, (4)
res

At time ¢, the robot odometry x; = (¢ y; (;St)T can be

determined by accumulating the partial odometries Ax which
can be calculated from AD, AD,., and AD; of (4):

Ty_1 + AD cos ¢y
Ye—1 + AD sin ¢y &)
¢t—1 + AD,.ZADl

In a differential-drive system, the traction wheels need to
be driven with the same velocity profile; this can be chal-
lenging due to the variations between the wheels, motors, and
floor conditions [39]. Knowing these constraints and adding
the wheel slippage problems, the estimated state using only
odometers will quickly drift from the real state.

x¢ = f(Xe—1) =%¢—1 + Ax =

C. Laser scanner

The LiDAR provides a list of ranges (distances), which
contains 541 elements; each element represents the measured
distance at an angle starting at —135° to 135°, with a 0.5°
increment. Supposing U is the list of distances indexed with
n, we can pass from this ranges list to a list of 2D points in
polar coordinates, the point corresponding to the n-th element
is u,, such as:



Up = (ZZ) - (_1350 f’; y o.5°> with 0 < n < 541
(6)
For our algorithm, we need to convert the points from polar
(up) to cartesian coordinates (p,,) using:

Tn P €OS O, )
= — <
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We represent each scan frame as a collection of 541 2D
points.

IV. THE SLAM APPROACH

We equipped the experimental platform with two wheels
encoders, and two LiDARs covering 360°, having these sen-
sors, we used an optimization-based, scan matching algorithm
named NDT-PSO [40] to align scans from each LiDAR
separately. This method is based on the Normal Distribution
Transform (NDT) scan matching method [3] and the bio-
inspired Particle Swarm Optimization (PSO) [41].

The proposed system contains an odometer node; two sep-
arates NDT-PSO nodes (for each LiDAR) running alongside a
fusion node that performs the EKF fusion using the odometry
to predict and the NDT-PSO to update.

A. Environment Modeling

We used a Normal Distribution Transform [3] based repre-
sentation to model the environment.

The first step in this representation is to divide the envi-
ronment to a set of cells of known dimensions (1m x 1m for
example), then the idea is to represent the 2D points contained
in each cell “c” as a normal distribution N, (p., X.) instead
of dealing with them as a point cloud. To achieve this, for a
cell “c” we collect all “n” 2D points p;—1. ., = (x; y;)*, and
calculate the normal distribution N, (g, X.) parameters:

1< 1 T

He = n izzlpz and X, = n ;(pz Mc)(pz /'LC) 3

Note that for 2D points, the mean p, € R2 and the
covariance matrix Y. € R? x R2.

The set of normal distributions (N.) represents the NDT
map; this representation is similar to an occupancy grid [42].
However in NDT, the probability is not set to the whole cell;
instead, it associates a probability density function (PDF) to
each cell (Fig. 4), the probability of measuring a 2D point
sample p in a cell ¢ is given by the PDF “II.” such as:

(p - ,UC)TEc_l(p - ,Uc)
2
In a k-dimensions multivariate normal distribution, the C
constant is usually set to ((27)~ % det(X)~2), however, in
the optimization process, we do not need to normalize the
probabilities; therefore, C is set to 1 in the PDF (9).

ITe(p) = Cexp ©)
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3
X

Fig. 4. The NDT representation of some cells, the input points represented
as red cross marks (from [3]).

B. Scans Alignment and Pose Estimation

T .
Let (Ax Ay) the translation between two laser scans
and A¢ is the orientation change. The spatial mapping
T (x¢—1, Ax;) between two robot coordinate frames from time

t—1totis:
— sin ¢ Ty Axy
10
Cos ¢y ) <yt1) i (Ayt> (19)
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with {qﬁt = d-1+ Ady

xi—1 = (@1 y—1 d—1)7 and Axy = (Azy Ayy Agy)T

Given two scans at times ¢ and ¢t — 1, the goal of scan
alignment/registration is to find the transformation parameters
Axy, Ay and A¢; between the two scans.

For a scan of N 2D points “p;=1... 5, the objective function
A of the parameter Ax = (Ax Ay A¢)7 is defined as in [3]:

N

A(Ax) = =Y TI(T (pi, Ax))

i=1

(an

In [3], the Ax is optimized using A with the Newton
method, but in [40] a PSO based optimization is used for
better global convergence. PSO starts by randomly initializing
a swarm of M particles P'='M = (Ax;, Ay;, Ag;) in a
chosen search space, in our case, the particle is a 3D vector,
hence ; = 1...3. Using the objective function for each
particle P*, we calculate the particle velocity and position [41]
as follow (we removed the ¢ index for simplicity):

vlpy = wol +er](B] = ) + e2r} (G = P))

al, =]+l with j=1...3

(12)
13)

With w, ¢; and, cy are the PSO inertial, cognitive, and
social constants; r; and r, are two positive random numbers
in range [0, 1]. The B, is the particle’s personal best, and G
is the global best of the whole swarm. At time ¢+ 1 and for a
particle of index “¢”, the personal and global bests are chosen
as follow:
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Having all these pieces, the NDT-PSO scan matching SLAM
executes as follow:

1) At time t, divide scan ¢ — 1 into cells (of 1m x 1m),
and calculate the mean and the covariance for each cell
as presented in (8),

2) Convert laser ranges U}, to a point cloud p}, using (6)
and (7).

3) Randomly initialize the particle swarm in a chosen
search space.

4) For each particle P*:

a) Calculate the particle’s velocity and position using
(12) and (13).

b) Map the samples p; from the coordinate frame of
scan t to the scan t — 1 using 7 (pg, P?) in (10),

¢) Use the mapped point to determine the personal
and global bests (B!, Gy) as in (14) and (15),

d) Repeat from step (4) until convergence or for a
fixed number of iterations.

5) The global best G, is selected as the change in pose
from time ¢ — 1 to .

At the end of the iteration, the pose is updated using the
global best as follow:

X = Xi—1 + Gy (16)

Our implementation of NDT-PSO uses a temporal window
for each cell, implemented as a circular buffer of points inside
the cell; this technique limits the number of points used per
cell, which makes the memory complexity depends only on
the map size and reduces the computational complexity when
calculating the normal distribution parameters. Limiting points
is very important when operating for a long time; and also,
since older points get replaced by new observations, this
temporal window allows so far the filtering of moving objects
without a proper detection and filtering scheme.

C. Extended Kalman Filter Fusion

Due to small structural imperfections, installing the two
laser scanners in the same horizontal plane can be a tricky
task, even a little vertical angle difference can cause more
remarkable differences in the measured ranges. Without a
precise calibration, the front and back LiDARs may see a
slightly inclined planes with respect to each other, this can
cause some inconsistencies when matching scans from the
front LIDAR with those obtained from the back one, and cause
higher uncertainties in matched scans.

Separately matching each LiDAR can assure a kind of local
consistency between different scans of the same LiDAR. Then,

Back LIDAR —1>| Back NDT-PSO SLAM
>
Front LIDAR ——>| Front NDT-PSO SLAM |7>
A

Wheels encoders —— Odometry

SmartTrolley SLAM System

EKF Fusion > Pose

Fig. 5. The SmartTrolley’s fusion architecture.

fusing the obtained poses from each LiDAR might give us a
better estimate of the pose.

Furthermore, since the two LiDARs are completely inde-
pendents, using a distributed fusion architecture (Fig. 5) can
deliver pose information even if one of the LiDARs fails,
which is a required constraint in safety oriented navigation.

We can see that the expression of x; = f(x;—1) in the
odometry model (5) is not linear; thus, an Extended Kalman
Filter (EKF) is used for the fusion.

In our preliminary tests, we tried both the EKF and a
Particle Filter (PF), we choose an EKF because it is much
faster than PF, and because the fusion is performed after NDT-
PSO which is based on a stochastic swarm optimization that
is similar to a Particle Filter.

1) Prediction Phase: For the prediction step, we used
the odometry got from the proprioceptive system of wheel
encoders, the prediction of the state Xy, and the associated
uncertainty Py,_; at time £ given all measurements up to
k—1 are:

Xpjk—1 = f(Xp—1p—1) + qh—1 (17)

Pr—1 = ' Fic1p—1)Protjp1f K1)’ + Qut
(18)

With qr—1 ~ N(0,Qg—1) is the gaussian process noise,
f is the odometry expression defined in (5) and f’ it’s first
Taylor expansion which can be expressed as:

of 1 0 —ADsing
f(x) = p 0 1 ADcoso (19)
x 0 0 1

2) Update Phase: In each time iteration, we run NDT-PSO
on the front and back LiDARs; each one gives an observation
(pose) in the same reference frame, the final step is to fuse
these two observations using the predicted state, each time we
receive a pose form NDT-PSO we run the prediction and the
update with the received observation.

(20)
2

Xk = Xpjh—1 + Ke(Yr — A(Xgjp—1))
P = Prpo1 — KiSeKY

With S, is the predicted covariance of the measurement

Y&, Ky is the Kalman gain, and Ry, is the covariance of the
measurement noise.



Fig. 6. The first prototype of our SmartTrolley experimental mobile platform,
in the test room.

Sk = h'(Rij—1)Prjp—1h Xep—1)” + Ri
Ki = Ppjp_1h (Rgp—1) "S5 '

Note that we do not need an observation model in our case
since the poses are already calculated using NDT-PSO, so
h(x) =H -x is used with H = I5.

V. EXPERIMENTAL RESULTS

In this Section, the SmartTrolley platform (Fig. 6) is used to
validate our SLAM algorithm, with two NDT-PSO ROS nodes,
an odometer node, and the EKF node running in parallel.
When running our NDT-PSO implementation for one LiDAR,
the algorithm’s frequency is around 40Hz while the LiDAR is
configured to publish data at a frequency of 8Hz, however,
due to the operating system scheduling, when running the
two NDT-PSO nodes simultaneously, the overall matching
frequency drops to around 9Hz, this can be improved by
redesigning the implementation to run the two LiDARs as
threads in the same ROS node instead of having two separate
processes. The system provides a fused pose at a rate of 8Hz,
which is acceptable for real-time execution in our case since
the robot operates at low speeds.

We run our experience in a room of 11m length and 6.7m
width in the wider region and 4.25m in the narrowest one. We
used an Xbox wireless gamepad to move the robot remotely.
The SmartTrolley started at the position marked with a red star
in (Fig. 8), it traveled a distance of 4.5m before performing
some clockwise and anticlockwise rotations on itself, and then
returning in backward direction to nearby its starting position.

The (Fig. 7) shows the odometry trajectory and the two
NDT-PSO trajectories generated from the front and back
LiDARs with their associated maps. We can notice that at
starting, the odometry was close to the pose estimated form the
two LiDARs, but over time it gets diverged from the LiDARS’
estimated poses, at the end of the experiment, the distance
from the actual position of the robot and the odometry was
0.75m. This effect is well known for the odometry since there

. Map (from back scans)  *
gt Map (from front scans) ~ *
- NDTPSO pose (front lidar)
NDTPSO pose (back lidar)

Odometry
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Fig. 7. The NDT-PSO generated maps from the two LiDARs, with associated
poses, and the odometry (distance unit is meters).

is no external correction on it; wheel slippage causes each
time a small error which gets cumulated over time, producing
a poor estimate of the pose when only using the odometry.
We can also see a small mismatching between the two maps;
this is due to the structural imperfections discussed previously,
this mismatching impacts also the poses associated with each
map.

The proposed solution was to use the odometry to predict
the state and fuse the two LiDARs poses with an EKF, the
(Fig. 8) shows the trajectory after fusion, alongside the input
poses and odometry.

Since NDT-PSO initialize the search space randomly at each
iteration and uses a stochastic optimization method, the output
pose is a little bit noisy; this effect can be seen in (Fig. 8). On
the other hand, odometry seems to be much smoother due to
its straightforward calculation formulas. Using the odometry
in the EKF prediction gives as a smoother output compared to
the LiDAR input poses. Prediction using odometry also gives
the advantage of using real feedback of the system instead
of a kinematic model-based prediction (predicting the robot’s
movement only from the control input), this is very useful in
the case of failure of the kinematic model prediction, like when
the motors cannot be regulated to the desired input speed (for
example, due to a power issue, or a movement on an inclined
floor) or when the robot gets pushed externally.

In (Fig. 8), we can observe that the fused trajectory is
somewhere between the two LiDARs trajectories; this is the
expected behavior since the EKF uses the same uncertainties
for both front and back LiDARS; we can also observe that the
fused pose is smoother than LiDAR poses.

The advantage of fusing two poses over merging the scans
and performing one SLAM matching is that having two
independents input data for the fusion; an outlier pose (due
to alignment error in one of the LiDARSs) can be corrected so
far, the lousy pose will not contribute as much as the good
one since it will lay too far from its expected uncertainty.



Map (from back scans)
Map (from front scans)
NDTPSO pose (front lidar)
NDTPSO pose (back lidar)
Odometry

EKF fused pose —e—

25 3 35 4

Fig. 8. The EKF fused trajectory, alongside with the input data from odometry
and two LiDARS poses (distance unit is meters), the starting position is marked
with a red star.

Also, merging the two scans needs to have an accurately
synchronized LiDARs, when an EKF sensor fusion can deal
with asynchronous data.

The table I shows the Mean Absolute Error (MAE), and
the Mean Squared Error (MSE) for the trajectory of (Fig. 8),
calculated between the fused pose and the odometry, the front
LiDAR pose, and the back LiDAR pose. The table gives an
idea about each input’s contribution to the fused output pose.

TABLE 1
MEAN ABSOLUTE ERROR (MAE) AND MEAN SQUARED ERROR (MSE),
CALCULATED BETWEEN THE FUSED AND THE INPUT DATA

MAE (m m rad) MSE (m? m? rad?)
Odometry || (0.1245 0.1572 0.1341) | (0.0267 0.0640 0.0382)
Front (0.0161 0.0158 0.0100) | (0.0004 0.0007 0.0004)
Back (0.0133 0.0103 0.0089) | (0.0003 0.0002 0.0004)

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented our initial prototype of the
SmartTrolley experimental platform; we have also presented an
EKF-based data fusion scheme for Simultaneous Localization
and Mapping (SLAM) using laser scanners. An implementa-
tion experimental validation is also provided.

ROS implementations of our SLAM and EKF fusion sys-
tems are used to validate the proposed method; our system was
able to respond to the real-time constraints of the SmartTrolley
platform. The results show a smoother pose estimate compared
to the noisy LiDARs poses inputs. The distributed fusion
architecture we used gave us a robust way for pose estimation,
which delivers reasonable estimates even when one of the
LiDARs fails, or when an outlier pose is provided by one
of the LiDARSs as a result of scan matching error.

This prototype uses only LiDARs and wheels encoders.
However, the project aims to add a set of low-cost sensors;

some for solving the localization problem incrementally (like
cameras and ultrasonic sensors); alongside with sensors that
can be used to get the absolute localization in the robot’s
environment (like WiFi, Zigbee, Bluetooth and UWB); and
replaces the LiDAR with these sensors. For safety purposes,
after removing the LiDARs; a set of infrared ToF ranging
sensors will be added around the robot for collision detection
and avoidance of obstacles and moving objects.
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